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Hacking Like It's 1999

● Scripts written in different languages - Low Code Reuse
● Change of Logic causes Tool rewrite - Low Code Reuse
● Tools produces different outputs - Agnostic Tools
● Tools takes different parameters and formats - Agnostic Tools
● Multi-threading is a Tool feature - Scaleability Issues
● And etc.



  

Hacking Like It's 1999 - Summary

● Problems:
– Agnostic Tools
– Scalability
– Code Reuse



  

Requirements for Hacking Like It's 2013

● Synergy Between Tools
– Tool can “import“ another tool output/results
– Tool arguments/parameters are Standardized

● Maximize Code Reuse
– Special cases do not require re-writing of the Tool
– Code can be used multiple times in multiple ways

● Scalability (regardless of the Tool used)
– Multi-threading
– Multi-processing



  

Pythonect + Hackersh = Hacking Like It's 2013
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Metadata

Python
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Dataflow Programming



  

Pythonect

● Pythonect is a portmanteau of the words Python and Connect
● New, experimental, general-purpose dataflow programming language 

based on Python
● Current “stable“ version (True to May 19 2013): 0.5.0
● Made available under 'Modified BSD License'
● Influenced by: Unix Shell Scripting, Python, Perl
● Cross-platform (should run on any Python supported platform)
● Website: http://www.pythonect.org/

http://www.pythonect.org/


  

Installing and Using The Pythonect Interpreter

● Install directly from PyPI using easy_install or pip:
– easy_install Pythonect

OR
– pip install Pythonect

● Clone the git repository:
– git clone git://github.com/ikotler/pythonect.git

– cd pythonect

– python setup.py install



Dataflow Programming

Programming paradigm that treats data as something originating
from a source, flows through a number of components and arrives at 
a final destination - most suitable when developing applications that 

are themselves focused on the "flow" of data.



Dataflow Example

A video signal processor which may start with video input, 
modifies it through a number of processing components (i.e. video filters), 

and finally outputs it to a video display.
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Dataflow Example

Want to change a feed from a local file to a remote file on a website? 

No problem!
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Dataflow Example

Want to write the Video B&W Frame Processor output 
to both a screen and a local file? 

No problem!
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Dataflow Programming Advantages

● Concurrency and parallelism are natural
● Data flow networks are natural for representing process
● Data flow programs are more extensible than traditional 

programs



  

Dataflow Programming Disadvantages

● The mindset of data flow programming is unfamiliar to most 
programmers

● The intervention of the run-time system can be expensive



  

Dataflow Programming Languages

● Spreadsheets are essentially dataflow (e.g. Excel)
● VHDL, Verilog and other hardware description languages are 

essentially dataflow
● XProc
● Max/Msp
● Etc.



  

<Pythonect Examples>



  

'Hello, world' -> print

String Function



  

What do we have here?

● -> is a Pythonect Control Operator, it means async forward.

● There's also | (i.e. Pipe) which means sync forward.

● 'Hello, world' is a literal string

● print is a function



"Hello, world" -> [print, print]

String

Function

Function



 ["Hello, world", "Hello, world"] -> print

Function

String

String



  

Basic Pythonect Syntax Summary

● -> is async forward.

● | (i.e. Pipe) is sync forward.

● _ (i.e. Underscore) is current value in flow



  

<Pythonect Security Scripts/Examples>



raw_input() -> _.encode('rot13') -> print

Function Function

ROT13 Encrypt & Decrypt

Function



'ftp.gnu.org' \ 
    -> ftplib.FTP \ 
    -> _.login() \
    -> print("Allow anonymous")

String Class

Check if FTP Server Supports Anonymous Login

Function Function



['%s', '%n', 'A', 'a', '0', '!', '$', '%', '*', '+', ',', '-', '.', '/', ':'] \
    | [_ * n for n in [256, 512, 1024, 2048, 4096]] \
        | os.system('/bin/ping ' + _)

Array Nested Loop

Command line Fuzzer

Function



  

References / More Examples

● My Blog
– Scraping LinkedIn Public Profiles for Fun and Profit
– Fuzzing Like A Boss with Pythonect
– Automated Static Malware Analysis with Pythonect

● LightBulbOne (Blog)
– Fuzzy iOS Messages!

http://blog.ikotler.org/
http://blog.ikotler.org/2012/12/scraping-linkedin-public-profiles-for.html
http://blog.ikotler.org/2012/09/fuzzing-like-boss-with-pythonect.html
http://blog.ikotler.org/2012/08/automated-static-malware-analysis-with.html
http://lightbulbone.com/
http://lightbulbone.com/post/33937338035/fuzzy-ios-messages


  

-> Moving on! ->

Hackersh



  

Hackersh

● Hackersh is a portmanteau of the words Hacker and Shell
● Shell (command interpreter) written with Pythonect-like syntax, 

built-in security commands, and out of the box wrappers for 
various security tools

● Current “stable“ version (True to May 19 2013): 0.2.0
● Made available under GNU General Public License v2 or later
● Influenced by: Unix Shell Scripting and Pythonect
● Cross-platform (should run on any Python supported platform)
● Website: http://www.hackersh.org

http://www.hackersh.org/


  

A few words on the Development

● Written purely in Python (2.7)
● Hosted on GitHub



  

Motivation

● Taking over the world
● Automating security tasks and reusing code as much as 

possible



  

Installing and Using The Hackersh

● Install directly from PyPI using easy_install or pip:
– easy_install Hackersh

OR
– pip install Hackersh

● Clone the git repository:
– git clone git://github.com/ikotler/hackersh.git

– cd hackersh

– python setup.py install



  

Implementation

● Component-based software engineering
– External Components:

● Nmap
● W3af
● Dnsdict6
● Etc.

– Internal Components:
● URL (i.e. Convert String to URL)
● IPv4_Address (i.e. Convert String to IPv4 Adress)
● IPv6_Address (i.e. Convert String to IPv6 Adress)
● Etc.



  

Component as Application

● Components accepts command line args: 
– "localhost" -> hostname -> nmap("-P0")

● They also accept internal flags options as:
– "localhost" -> hostname -> nmap("-P0", debug=True)



  

Input/Output: Context

● Every Hackersh component (except the Hackersh Root 
Component) is standardized to accept and return the same 
data structure – Context.

● Context is a dict (i.e. associative array) that can be piped 
through different components



  

Same Context, Different Flow

● "http://localhost" -> url -> nmap -> ping

– Port scan a URL, if  *ANY* port is open, ping the URL
● "http://localhost" -> url -> ping -> nmap

– Ping the URL, if pingable, scan for *ANY* open ports 



  

Ask The Context

● Context stores both Data and Metadata
● The Metadata aspect enables potential AI applications to fine-

tune their service selection strategy based on service-specific 
characteristics



  

"http://localhost" \
    -> url \
        -> nmap \
            -> [_['PORT'] == '8080' and _['SERVICE'] == 'HTTP'] \
                -> w3af \
                    -> print

Conditional Flow



  

Hackersh High-level Diagram

Literal
(e.g. String)

Root
Component
(e.g. URL)

Context Component ...



  

<Hackersh Web App Pentest Script Step-by-Step>



  

"hackersh.org" -> domain -> dnsdict(“-4“)

Target
Built-in

Component

Step #1: Information Gathering / Network Analysis / DNS

External
Component



  

"hackersh.org" \
    -> domain \
        -> dnsdict(“-4“) \
            -> nmap

Target
Built-in

Component

Step #2: Information Gathering / Network Analysis / Service Fingerprinting 

External
Component

External
Component



  

"hackersh.org" \
    -> domain \
        -> dnsdict(“-4“) \
            -> nmap \
                -> nikto

Target
Built-in

Component

Step #3: Vuln. Assessment / Web App Assessment / Web Vuln. Scanner 

External
Component

External
Component

External
Component



  

"hackersh.org" \
    -> domain \
        -> dnsdict(“-4“) \
            -> nmap \
                -> nikto \
                    -> w3af
                    

Target
Built-in

Component

Step #4: Vuln. Assessment / Web App Assessment / Web Vuln. Scanner # 2

External
Component



  

"hackersh.org" \
    -> domain \
        -> dnsdict(“-4“) \
            -> nmap \
                -> nikto \
                    -> w3af \
                        -> print
                    

Target
Built-in

Component

Step #5: Reporting

External
Component



  

Fork



  

"ikotler.org" \
    -> hostname \
        -> [nslookup, pass] -> ...

Target
Built-in

Component

Target as Hostname + Target as IP

Target
as Hostname

...

Target
as IPv4 Addr.

...



  

Hackersh Roadmap

● Unit Tests
● Documention
● More Tools

– Metasploit
– OpenVAS
– TheHarvester
– Hydra
– …

● Builtin Commands
● <YOUR IDEA HERE>



  

Questions?



  

Thank you!

My Twitter: @itzikkotler
My Email: ik@ikotler.org

My Website: http://www.ikotler.org

Pythonect Website: http://www.pythonect.org
Hackersh Website: http://www.hackersh.org

Feel free to contact me if you have any questions!

http://twitter.com/itzikkotler
mailto:ik@ikotler.org
http://www.ikotler.org/
http://www.pythonect.org/
http://www.hackersh.org/
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