

Hacking Like It's 2013
(with Pythonect & Hackersh)

Itzik Kotler

Hacking Like It's 1999

● Scripts written in different languages - Low Code Reuse
● Change of Logic causes Tool rewrite - Low Code Reuse
● Tools produces different outputs - Agnostic Tools
● Tools takes different parameters and formats - Agnostic Tools
● Multi-threading is a Tool feature - Scaleability Issues
● And etc.

Hacking Like It's 1999 - Summary

● Problems:
– Agnostic Tools
– Scalability
– Code Reuse

Requirements for Hacking Like It's 2013

● Synergy Between Tools
– Tool can “import“ another tool output/results
– Tool arguments/parameters are Standardized

● Maximize Code Reuse
– Special cases do not require re-writing of the Tool
– Code can be used multiple times in multiple ways

● Scalability (regardless of the Tool used)
– Multi-threading
– Multi-processing

Pythonect + Hackersh = Hacking Like It's 2013

Python

Metadata

Python

3rd Party
Security Tools

Dataflow Programming

Pythonect

● Pythonect is a portmanteau of the words Python and Connect
● New, experimental, general-purpose dataflow programming language

based on Python
● Current “stable“ version (True to May 19 2013): 0.5.0
● Made available under 'Modified BSD License'
● Influenced by: Unix Shell Scripting, Python, Perl
● Cross-platform (should run on any Python supported platform)
● Website: http://www.pythonect.org/

http://www.pythonect.org/

Installing and Using The Pythonect Interpreter

● Install directly from PyPI using easy_install or pip:
– easy_install Pythonect

OR
– pip install Pythonect

● Clone the git repository:
– git clone git://github.com/ikotler/pythonect.git

– cd pythonect

– python setup.py install

Dataflow Programming

Programming paradigm that treats data as something originating
from a source, flows through a number of components and arrives at
a final destination - most suitable when developing applications that

are themselves focused on the "flow" of data.

Dataflow Example

A video signal processor which may start with video input,
modifies it through a number of processing components (i.e. video filters),

and finally outputs it to a video display.

Local
File

Reader

Screen
Output
Display

Video
B&W

Frame
Procressor

Dataflow Example

Want to change a feed from a local file to a remote file on a website?

No problem!

URL
Downloader

Screen
Output
Display

Video
B&W

Frame
Procressor

Dataflow Example

Want to write the Video B&W Frame Processor output
to both a screen and a local file?

No problem!

URL
Downloader

Local
File

WriterVideo
B&W

Frame
Procressor Screen

Output
Display

Dataflow Programming Advantages

● Concurrency and parallelism are natural
● Data flow networks are natural for representing process
● Data flow programs are more extensible than traditional

programs

Dataflow Programming Disadvantages

● The mindset of data flow programming is unfamiliar to most
programmers

● The intervention of the run-time system can be expensive

Dataflow Programming Languages

● Spreadsheets are essentially dataflow (e.g. Excel)
● VHDL, Verilog and other hardware description languages are

essentially dataflow
● XProc
● Max/Msp
● Etc.

<Pythonect Examples>

'Hello, world' -> print

String Function

What do we have here?

● -> is a Pythonect Control Operator, it means async forward.

● There's also | (i.e. Pipe) which means sync forward.

● 'Hello, world' is a literal string

● print is a function

"Hello, world" -> [print, print]

String

Function

Function

 ["Hello, world", "Hello, world"] -> print

Function

String

String

Basic Pythonect Syntax Summary

● -> is async forward.

● | (i.e. Pipe) is sync forward.

● _ (i.e. Underscore) is current value in flow

<Pythonect Security Scripts/Examples>

raw_input() -> _.encode('rot13') -> print

Function Function

ROT13 Encrypt & Decrypt

Function

'ftp.gnu.org' \
 -> ftplib.FTP \
 -> _.login() \
 -> print("Allow anonymous")

String Class

Check if FTP Server Supports Anonymous Login

Function Function

['%s', '%n', 'A', 'a', '0', '!', '$', '%', '*', '+', ',', '-', '.', '/', ':'] \
 | [_ * n for n in [256, 512, 1024, 2048, 4096]] \
 | os.system('/bin/ping ' + _)

Array Nested Loop

Command line Fuzzer

Function

References / More Examples

● My Blog
– Scraping LinkedIn Public Profiles for Fun and Profit
– Fuzzing Like A Boss with Pythonect
– Automated Static Malware Analysis with Pythonect

● LightBulbOne (Blog)
– Fuzzy iOS Messages!

http://blog.ikotler.org/
http://blog.ikotler.org/2012/12/scraping-linkedin-public-profiles-for.html
http://blog.ikotler.org/2012/09/fuzzing-like-boss-with-pythonect.html
http://blog.ikotler.org/2012/08/automated-static-malware-analysis-with.html
http://lightbulbone.com/
http://lightbulbone.com/post/33937338035/fuzzy-ios-messages

-> Moving on! ->

Hackersh

Hackersh

● Hackersh is a portmanteau of the words Hacker and Shell
● Shell (command interpreter) written with Pythonect-like syntax,

built-in security commands, and out of the box wrappers for
various security tools

● Current “stable“ version (True to May 19 2013): 0.2.0
● Made available under GNU General Public License v2 or later
● Influenced by: Unix Shell Scripting and Pythonect
● Cross-platform (should run on any Python supported platform)
● Website: http://www.hackersh.org

http://www.hackersh.org/

A few words on the Development

● Written purely in Python (2.7)
● Hosted on GitHub

Motivation

● Taking over the world
● Automating security tasks and reusing code as much as

possible

Installing and Using The Hackersh

● Install directly from PyPI using easy_install or pip:
– easy_install Hackersh

OR
– pip install Hackersh

● Clone the git repository:
– git clone git://github.com/ikotler/hackersh.git

– cd hackersh

– python setup.py install

Implementation

● Component-based software engineering
– External Components:

● Nmap
● W3af
● Dnsdict6
● Etc.

– Internal Components:
● URL (i.e. Convert String to URL)
● IPv4_Address (i.e. Convert String to IPv4 Adress)
● IPv6_Address (i.e. Convert String to IPv6 Adress)
● Etc.

Component as Application

● Components accepts command line args:
– "localhost" -> hostname -> nmap("-P0")

● They also accept internal flags options as:
– "localhost" -> hostname -> nmap("-P0", debug=True)

Input/Output: Context

● Every Hackersh component (except the Hackersh Root
Component) is standardized to accept and return the same
data structure – Context.

● Context is a dict (i.e. associative array) that can be piped
through different components

Same Context, Different Flow

● "http://localhost" -> url -> nmap -> ping

– Port scan a URL, if *ANY* port is open, ping the URL
● "http://localhost" -> url -> ping -> nmap

– Ping the URL, if pingable, scan for *ANY* open ports

Ask The Context

● Context stores both Data and Metadata
● The Metadata aspect enables potential AI applications to fine-

tune their service selection strategy based on service-specific
characteristics

"http://localhost" \
 -> url \
 -> nmap \
 -> [_['PORT'] == '8080' and _['SERVICE'] == 'HTTP'] \
 -> w3af \
 -> print

Conditional Flow

Hackersh High-level Diagram

Literal
(e.g. String)

Root
Component
(e.g. URL)

Context Component ...

<Hackersh Web App Pentest Script Step-by-Step>

"hackersh.org" -> domain -> dnsdict(“-4“)

Target
Built-in

Component

Step #1: Information Gathering / Network Analysis / DNS

External
Component

"hackersh.org" \
 -> domain \
 -> dnsdict(“-4“) \
 -> nmap

Target
Built-in

Component

Step #2: Information Gathering / Network Analysis / Service Fingerprinting

External
Component

External
Component

"hackersh.org" \
 -> domain \
 -> dnsdict(“-4“) \
 -> nmap \
 -> nikto

Target
Built-in

Component

Step #3: Vuln. Assessment / Web App Assessment / Web Vuln. Scanner

External
Component

External
Component

External
Component

"hackersh.org" \
 -> domain \
 -> dnsdict(“-4“) \
 -> nmap \
 -> nikto \
 -> w3af

Target
Built-in

Component

Step #4: Vuln. Assessment / Web App Assessment / Web Vuln. Scanner # 2

External
Component

"hackersh.org" \
 -> domain \
 -> dnsdict(“-4“) \
 -> nmap \
 -> nikto \
 -> w3af \
 -> print

Target
Built-in

Component

Step #5: Reporting

External
Component

Fork

"ikotler.org" \
 -> hostname \
 -> [nslookup, pass] -> ...

Target
Built-in

Component

Target as Hostname + Target as IP

Target
as Hostname

...

Target
as IPv4 Addr.

...

Hackersh Roadmap

● Unit Tests
● Documention
● More Tools

– Metasploit
– OpenVAS
– TheHarvester
– Hydra
– …

● Builtin Commands
● <YOUR IDEA HERE>

Questions?

Thank you!

My Twitter: @itzikkotler
My Email: ik@ikotler.org

My Website: http://www.ikotler.org

Pythonect Website: http://www.pythonect.org
Hackersh Website: http://www.hackersh.org

Feel free to contact me if you have any questions!

http://twitter.com/itzikkotler
mailto:ik@ikotler.org
http://www.ikotler.org/
http://www.pythonect.org/
http://www.hackersh.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

