Malwares From Thin Bits

Itzik Kotler,
CTO & Co-Founder of ¢:: SafeBreach

About Me

* 15+ years in InfoSec
e CTO & Co-Founder of SafeBreach

* Presented in DEF CON, Black Hat, RSA, HITB, THOTCON, CCC, ... But
it’s my first time in BSidesDFW! | love it!

* http://www.ikotler.org

Drop It Like It’s Hot (From Wikipedia)

* A dropper is a program (malware component) that has been designed
to "install" some sort of malware (virus, backdoor, etc.) to a target
system.

* The malware code can be contained within the dropper (single-stage)
in such a way as to avoid detection by virus scanners or the dropper
may download the malware to the target machine once activated

(two stage) \

THE SUBJECT OF THIS TALK!

Common Failure Points in Two-Stage Droppers
O

Dropper

The request may contain a unique
identifier (e.g. URL) that can

trigger a Security Controller ‘N

Download Malware (e.g. GET /MALWARE . EXE)

Get Malware Payload (e.g. HTTP 200 0K ...)

o /7

The payload may trigger either
signature-driven or sandbox-like
Security Controller(s)

Malicious

Server

The attempt to resolve the
Malicious Server FQDN may
trigger a Security Controller

The attempt to connect to the
Malicious Server may trigger a
Security Controller

The Server Dilemma

* We can normalize the Dropper request, such that it won’t contain a
unique identifier in it. (e.g. GET / vs GET /mymalwaregen.php?id=5)

* We can play with the Malicious Server payload to make it look more
innocent (e.g. Steganography, Ad-hoc Compressing Algorithm etc.)

* We can’t programmatically make our Malicious Server to be innocent.
Rotating / Replacing it every Nth interval is not a real solution ...

The Untouchable Server Solution

* What if the server the Dropper communicated with is untouchable
(reputation-wise), in other words a popular website like Yahoo?

* That'd normally requires some kind of access to Yahoo to host our
payload and even then, it’s temporarily ... (until they will find out)

* What if the Dropper would treat website returned response as
“encoded data” and will “decode it” in a way that will result in a
creation of the malicious program?

How This Work? Input > Code > Output

* Data does not necessarily has to be plain or “AS IS”; it can be
encoded, compressed, encrypted etc.

* Code can take data and transform it, it can be one-way (e.g. MD5,
SHA256 etc.) or two-way (e.g. Base64, Zip, AES etc.) function.

* If the input data A is static, one can write a code that will transform it
to the desired output data B. It’s like it was “encoded” in the original
form and the code is “decoding” it in run-time ...

Example: Hello “BSidesDFW” from Yahoo!

Python 2.7.13

e 15t Step: Fetch 9 bytes (i.e. len(“BSidesDFW”)) from Yahoo '/

« >>> 1mport urllib2

« >>> raw_data = urllib2.urlopen('http://www.yahoo.com").read(9)
« >>> raw_data

« "<IDOCTYPE’

 2Md Step: Normalize The Data (ASCII Values)

« >>> norm_data = map(ord, raw_data)
« >>> norm_data
- [60, 33, 68, 79, 67, 84, 89, 80, 69]

Hello “BSidesDFW” from Yahoo! (Cont.)

e 3rd Step: Perform a Series of Transformations™ on The ASCII Values

¢ >>>

¢ >>>

¢ >>>

* >>>

* >>>

* >>>

¢ >>>

¢ >>>

* >>>

norm_datal[Q]
norm_data[1]
norm_data[2]
norm_data[3]
nhorm_data[4]
nhorm_data[5]
norm_datal[6]
norm_datal 7]
norm_data[8]

-0
-50
-37
-21
-34
-31
21
10
-18

1.e. 60-(-6)=66 , chr(66) is equal to ‘B’
i.e. 33-(-50)=83 , chr(83) is equal to ‘S’
...

* In this case, Transformations are basic arithmetic operations but it can be anything ...

Hello “BSidesDFW” from Yahoo! (Cont.)

* 4th Step: Convert ASCII Values to String

« >>> final_data = "'.join(map(chr, norm_data))
« >>> final_data
« "BSidesDFW’

Meet mkmalwarefrom

* Version: 1.0 (Initial Release)

* Programming Language: Python

* License: 3-Clause BSD

* Git Repository: https://github.com/SafeBreach-Labs/mkmalwarefrom

[v'] Transform Innocent HTTP Responses to Malicious Payloads
[v'] Transform Innocent Files Content to Malicious Payloads

Static Transformation
|

Internet Connection

Method

1: 1t's All About The HTTP Response

* Given a popular website like Yahoo that anyone can interact with (i.e.
does not require login)

e Sending a HTTP GET REQUEST to Yahoo will yield back a HTTP 200 OK
RESPONSE with HTML etc., plenty of data to work with

* A code can transform the Yahoo HTTP 200 RESPONSE OK into a
malicious program by preforming a series of bitwise operations on it

Demo!
(Generating /bin/Is from Yahoo!)

$ git clone https://github.com/SafeBreach-Labs/mkmalwarefrom

$ cd mkmalwarefrom

$ cat /bin/1s | ./mkmalwarefrom.py -1 http://www.yahoo.com > download_ls.py
$ python download_ls.py > 1s2

$ md5 /bin/1s 1s2

Pros / Cons of this Method

* (PRO) Input web page A can be used as Pre-Shared Key (PSK) as it has
to be the EXACT same page every time (for content to be de-coded)

* (PRO) Pure Code; Can Be Easily Mutated / Recursively-Fed

e (CON) It will always produce the same output (i.e. given page A and
code that transforms it, it will always generate output file B)

* (CON) It requires Internet Connection

Dynamic Transtformation
|

Internet Connection

A Word About Private or Anonymous Reviews

* There are websites that will let you post and comment Anonymously
by design. Why? Ideology, Embarrassed, Privacy Concerns etc.

e More at: http://www.localvisibilitysystem.com/2014/02/17/17-sites-
that-allow-private-or-anonymous-reviews-of-local-businesses/ (this is
not the most up-to-date list, just an example of ...)

Method #2: Comment & Control

* Anonymously posted data can serve as C2. E.g.: Wikipedia, RateMDs
etc.

 Posted data can be used a selector between 1...N code transformation
functions that are embedded in the Dropper. (Input can still be
static!)

* Posted data can also be used as a “decoding” scheme that in turn can
lead to endless number of transformations. (Input can still be static!)

Demo!
(Data as Selector)

$ git clone https://github.com/SafeBreach-Labs/mkmalwarefrom
$ cd mkmalwarefrom
$ python bsidesdfw_wiki_example.py

Pros / Cons of this Technigue

* (PRO) Payloads are completely programmable and can be deferred to
run-time

* (PRO) Pure Code; Can Be Easily Obfuscated / Mutated / Recursively-
Fed

* (CON) Not too many websites lets you post anonymously data to ‘em

* (CON) It requires Internet Connection

Static Transformation
|

No Internet Connection (Offline)

Method #3: Someone Else’s Data

* The Computer’s (i.e. Dropped Endpoint) Filesystem can be used as an
additional data source to be transformed

e Just like reading web page, we can open a file and read it’s content.
Like: %SystemRoot%\System32\Shell32.dll or /etc/passwd

* This can be an alternative to when the Computer (i.e. Dropped
Endpoint) have limited access to the Internet, or air-gapped

A A A A A

Demo!
(Generating netcat from ssh)

git clone https://github.com/SafeBreach-Labs/mkmalwarefrom

cd mkmalwarefrom

cat /usr/bin/nc | ./mkmalwarefrom.py -2 /usr/bin/ssh > mk_nc.py
python mk_nc.py > nc2

md5 /usr/bin/nc nc2

Pros / Cons of this Method

* (PRO) Input file A can be used as Pre-Shared Key (PSK) as it has to be
the EXACT same file every time (for content to be de-coded)

* (PRO) Pure Code; Can Be Easily Mutated / Recursively-Fed

e (CON) It will always produce the same output (i.e. given file A and
code that transforms it, it will always generate output file B)

Prior Art / References for this Method

* “Gauss contains a module named Godel that features an encrypted
payload. The malware tries to decrypt this payload using several
strings from the system and, upon success, executes it” < Similar
Idea; Different Implementation

* More at: https://securelist.com/the-mystery-of-the-encrypted-gauss-
payload-5/33561/

Chain Your Methods!
(aka. Defense In Depth For Attackers)

Entry Point:

Method #3: Someone Else’s Data
+

Method #1: It’s All About The HTTP Response
+

Method #2: Comment & Control

Acknowledgement

* Thanks to Amit Klein (VP of Security Research at SafeBreach) for his
help debating this idea with me ©

Thank You!
Q&A

Email: itzik@safebreach.com
Twitter: @itzikkotler
GitHub: https://github.com/SafeBreach-Labs

